Table of Contents

Class: HDSEOFs hdseofs.py

Base class holding the common operations for both HDSEOF constructors

Methods   
Average
Eigenvalues
Eigenvectors
MCTest
NorthTest
PCs
ScatteringMeasure
VarianceFraction
WholePCs
  Average 
Average ( self )

Time average of the original field

  Eigenvalues 
Eigenvalues ( self,  svdsolver=LA.singular_value_decomposition )

Eigenvalues of the covariance (correlation) matrix

  Eigenvectors 
Eigenvectors (
        self,
        Neofs,
        pcscaling=0,
        svdsolver=LA.singular_value_decomposition,
        )

EOFs, the eigenvectors of the covariance (correlation) matrix

Arguments:

Neofs
Number of EOFs to return

Optional arguments:

pcscaling
Kind of PC scaling. Defaults to 0, orthonormal EOFs. Set this parameter to 1 to obtain variance carrying orthogonal EOFs.
svdsolver
Routine to perform the SVD underlying decomposition. Defaults to LinearAlgebra's singular_value_decomposition.
Exceptions   
pex.ScalingError( pcscaling )
  MCTest 
MCTest (
        self,
        Neofs,
        iterator,
        subsamples,
        length,
        )

Monte Carlo test on the congruence

  NorthTest 
NorthTest ( self )

North error bars

  PCs 
PCs (
        self,
        Neofs,
        iterator,
        irecord,
        pcscaling=0,
        )

Principal components

Exceptions   
pex.ScalingError( pcscaling )
  ScatteringMeasure 
ScatteringMeasure ( self )

Covariance or correlation matrix depending on the constructor

  VarianceFraction 
VarianceFraction ( self,  svdfunc=LA.singular_value_decomposition )

Total variance fraction accounted for each principal mode

  WholePCs 
WholePCs (
        self,
        Neofs,
        iterator,
        pcscaling=0,
        )

Principal components for all records


Table of Contents

This document was automatically generated on Mon Dec 9 15:58:37 2002 by HappyDoc version 2.1